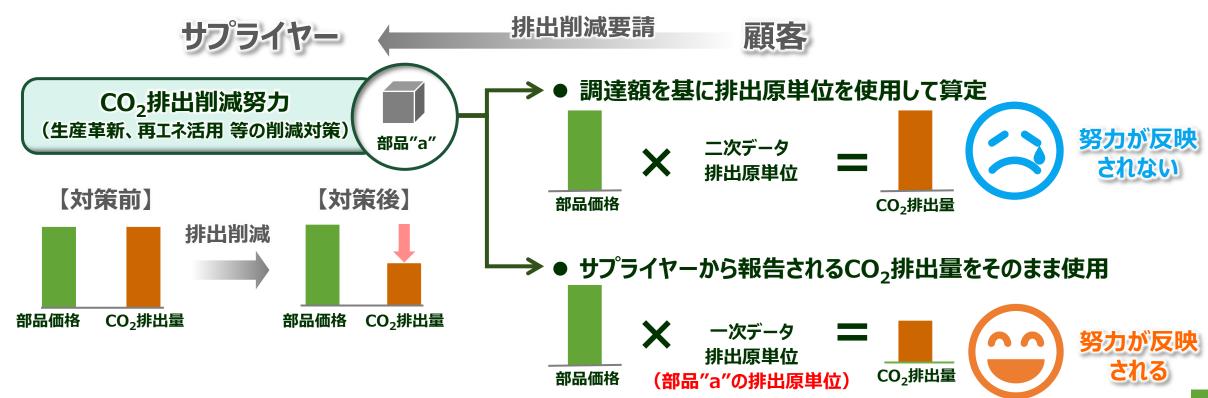
Green x Digital コンソーシアム 見える化WG実証実験フェーズ 2 最終報告書

2023年8月4日

実証の背景と目的

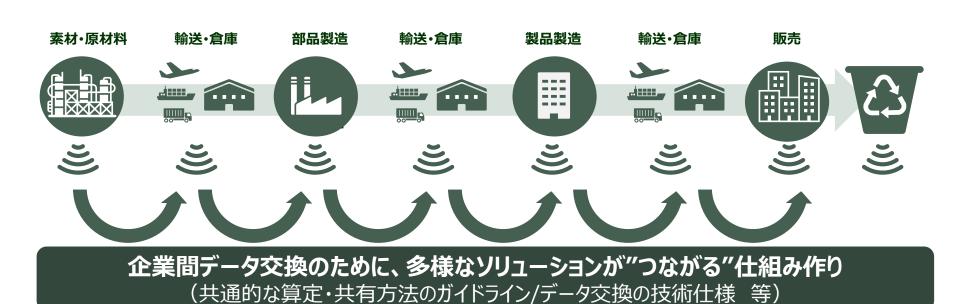
現在主流のScope3算定方法と課題

金額や、重量、数量など

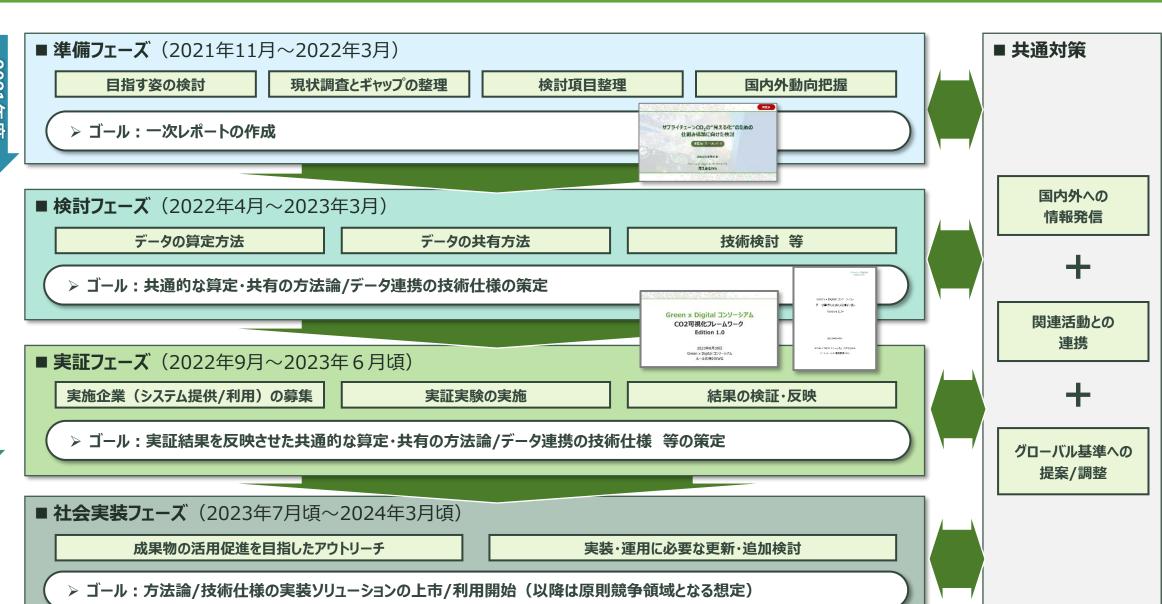

×

二次データ排出原単位

データベー


データベース等から 引用した業界平均値等

● Scope3 カテゴリ1算定方法の例


見える化WGが目指す姿

- デジタル技術を活用し、サプライチェーン全体のCO2データを見える化する仕組み
- CO₂排出量の削減に向けた企業間の協働(エンゲージメント)が促進されるように、 企業の排出削減努力がデータとして反映され、見える仕組み

Scope3排出量の見える化

サブワーキンググループ体制とアウトプット

見える化WG

● リーダー:みずほリサーチ&テクノロジーズ

● サブリーダー: NTTデータグループ、ブラザー工業

● メンバー企業 : 28 社

CO。可視化フレームワーク」

(Edition 1)

2023.6.30

実証実験

2022.4~

データフォーマット ・連携検討SWG

● リーダー:富士通

● サブリーダー:NTTデータグループ、野村総合研究所

● メンバー企業:20社

「データ連携のための技術仕様」

(Version 1)

2023.8.4

2022.4~

物流SWG

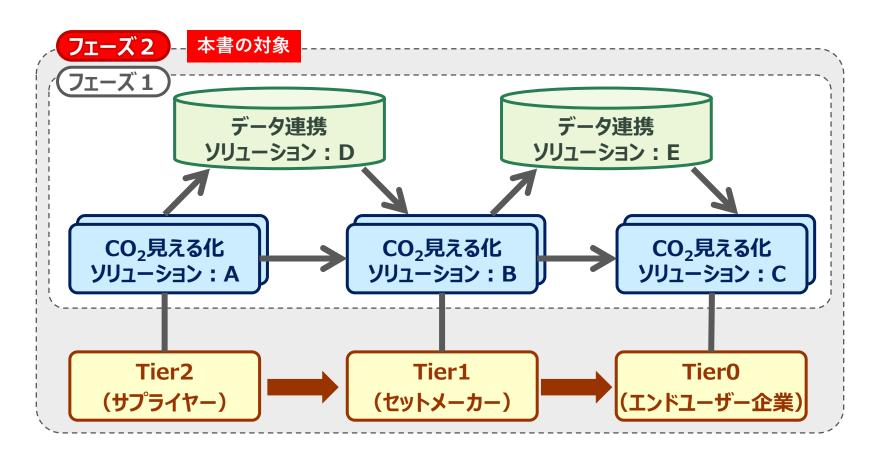
● リーダー: NIPPON EXPRESS ホールディングス

※2023.6まで

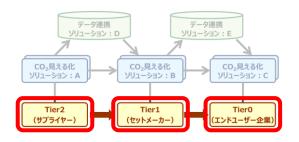
● サブリーダー:アイシン、NTTデータグループ、ヤマト運輸

● メンバー企業 : 16 社

「物流CO₂可視化のためのガイドライン」

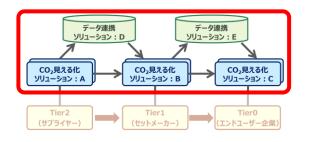

(策定中)

2023.秋(予定)

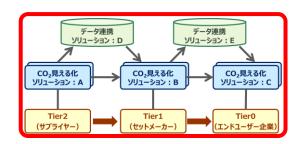

2022.9~

実証フェーズの対象範囲

- フェーズ 1: CO₂見える化ソリューション、及びデータ連携ソリューションの相互接続テスト(~2023年1月末) ※「Pathfinder Network」に基づいた「製品レベルデータ」でのデータ交換
- フェーズ 2 : CO₂データの取得、算定、活用、正確性検証等を含めたテスト(~2023年6月末) ※ユーザ企業も参加した「CO₂可視化フレームワーク」に基づいた「製品レベルデータ」、「組織レベルデータ」でのデータ交換



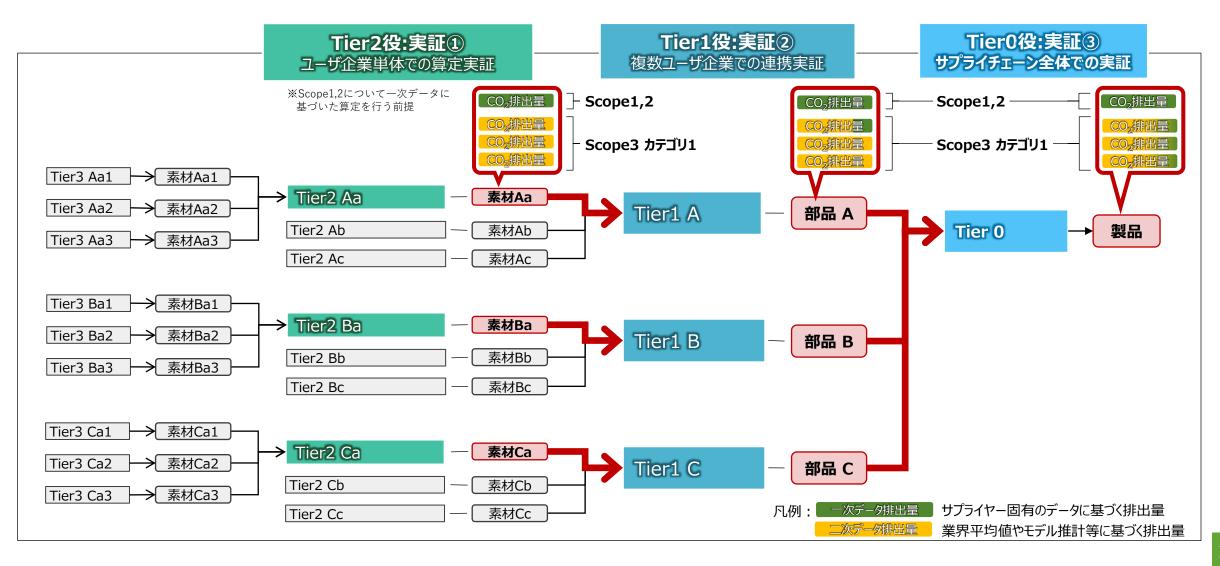
CO2算定方法・サプライチェーンでのデータ連携の実現性を検証


①ユーザ企業単体でのCO2算定

▶「CO2可視化フレームワーク」に基づく製品レベルまたは組織レベルでのCO2算定

② 複数ユーザ企業でのデータ交換

▶「データ連携のための技術仕様」に基づくサプライチェーン上流企業からの 一次データ取得



③ サプライチェーン全体での活用

ho エンドユーザー企業における、 CO_2 排出量削減のための継続的な改善に向けた活用検討

実証の概要

Tier2,Tier1役の各社が算定したCO2排出量をTier0役まで伝達

実証実験フェーズ2参加企業の一覧

- プロジェクトマネージャ(PM): 富士通、みずほリサーチ&テクノロジーズ
- プロジェクトマネジメントオフィス (PMO) : Ridgelinez
- メンバ企業: *はソリューション提供/ユーザ双方の役割で参画した企業

ソリューション提供企業(18社)

- •アスエネ
- アビームコンサルティング ・鈴与商事
- ・ウイングアーク1 s t・ゼロボード
- •SBI R3 Japan

- •NTTデータグループ*
- chaintope

- ・デロイト トーマツ コンサルティング
- •東芝*
- •日本電気*
- 日本オラクル

- •野村総合研究所
- •PID
- •日立製作所*
- •日立ソリューションズ

ソリューションユーザ企業(18社)

- •アイシン
- •NTTデータグループ*
- •川崎重工業
- ・キヤノン

- •住友電気工業
- •大日本印刷
- •東芝*
- •長瀬産業

- •日東電工
- •日本電気*
- •ネットワンシステムズ
- •日立製作所*

- •富士通*
- ・ブラザー工業
- •本田技研工業
- •みずほリサーチ&テクノロジーズ

- booost technologies
- •富十诵*

•三井物産

・ユニ・チャーム

(計32社)

■ 事務局: Green x Digitalコンソーシアム事務局(一般社団法人電子情報技術産業協会)

仮想サプライチェーンと仮想部品表

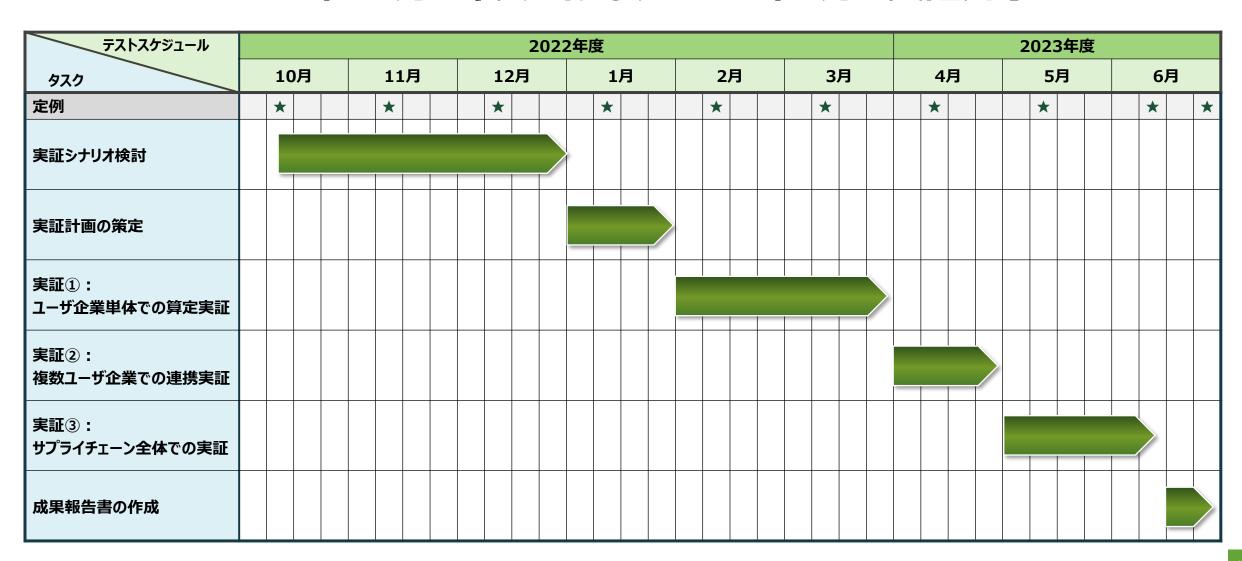
本実証では「パソコン」を題材に仮想サプライチェーンを構築

	Tier2				Tier1				Tier0	
部品ID	部品名	数量(g)		部品IC	部品名	数量(g)		部品ID	部品名	数量(台)
Aa Ab Ac	PT基板 CPU IC	312.73 41.00 19.01		Α	メインボード	372.74		製品	パソコン	1
Ba Bb	PT基板 IC	5.53 16.60	\longrightarrow	В	メモリ	22.13				
Ca Cb Cc	PT基板 フラッシュメモリ IC	55.88 27.94 37.66		С	SSD	121.48				
Da Db	PT基板 コンデンサ	9.28 1.77	\longrightarrow	D	タッチパッド	11.05	\vdash			
Ea Eb Ec	アルミニウム ABS POM	59.00 66.20 18.71		Е	KBD	143.91				
Fa Fb Fc	ステンレス PC-ABS PE	137.48 67.39 64.70		F	筐体	269.57		+		
Ga Gb Gc	アルミニウム 銅板 PE	36.25 6.98 0.39		G	FAN	43.62				
Ha Hb Hc	LCDパネル アクリル PET	196.74 73.78 36.89		Н	LCDユニット	307.40				
Ia Ib Ic	銅板 銅 PC	65.57 50.58 71.19		I	ACアダプタ	187.33				
Ja Jb Jc	銅 PE CR	44.43 40.75 4.58		J	ACケーブル	89.75				

[※] 部品毎のCO2排出量は、ソリューションユーザ企業が「CO2可視化フレームワーク」の内容をもとに各社でプロセス特定やデータを収集をおこない算定した。

仮想サプライチェーンと企業割り当て(製品レベル)

	Tier2役			Tier1役				Tier0役			
部品名	ユーザ	ソリューション	部品名	ユーザ	ソリューション		部品名	ユーザ	ソリューション		
PT基板 CPU IC	- - 東芝	- - アスエネ/東芝	メインボード	日本電気	日本電気					ユニ・チャーム	日立製作所
PT基板 IC	住友電気工業	アビーム/PID -	メモリ	キヤノン	野村総合研究所	\vdash		川崎重工業	デロイトトーマツ		
PT基板 フラッシュメモリ IC	- 日立製作所 -	- 日立製作所 -	SSD	東芝	アスエネ/東芝					大日本印刷	ゼロボード
PT基板 コンデンサ	- 日東電工	- 鈴与商事/ ウイングアーク1st	タッチパッド	アイシン	booost technologies	\vdash		キヤノン	野村総合研究所		
POM ABS アルミニウム	- - アイシン	booost technologies	KBD	日東電工	鈴与商事/ ウイングア−ク1 s t				ネットワン システムズ	野村総合研究所	
ステンレス PC-ABS PE	- 長瀬産業 -	echnologies - 富士诵 -	筐体	富士通	富士通		パソコン	ブラザー工業	野村総合研究所		
アルミニウム 銅板 PE	三井物産 - -	日立ソリューションス - -	FAN	長瀬産業	富士通	\vdash			_	_	
LCDパネル アクリル PET	- - 大日本印刷	- - ゼロボード	LCDユニット	大日本印刷	ゼロボード						
銅板 銅 PC	長瀬産業 - -	富士通 - -	ACアダプタ	東芝	ゼロボード/東芝	\vdash			CFP		
銅 PE CR	富士通 - -	富士通 - -	ACケーブル	住友電気工業	アビーム/PID			植	み上げ		

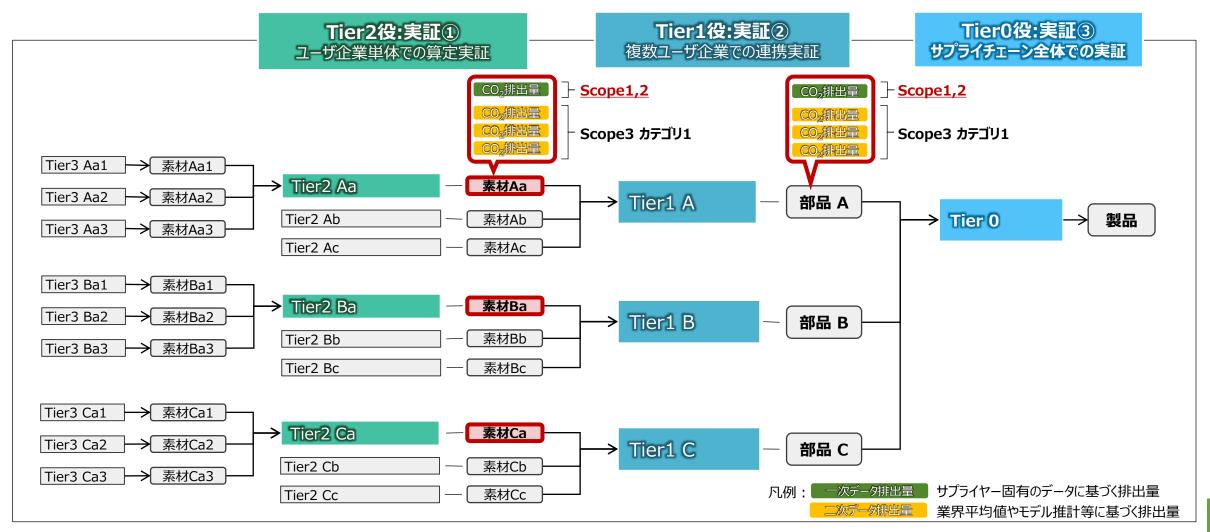

仮想サプライチェーンと企業割り当て(組織レベル)

	Tier2役			Tier1役				Tie
部品名	ユーザ	ソリューション	部品名	ユーザ	ソリューション		部品名	_
PT基板 CPU IC	東芝 - -	アスエネ/東芝 - -	メインボード	日本電気	NTTデータ グループ			ユニ
PT基板 IC	富士通	日立製作所	メモリ	東芝	ゼロボード/東芝			本田
PT基板 フラッシュメ IC		- - 日立製作所	SSD	東芝	アスエネ/東芝			みず(a テク.
PT基板 コンデンサ		- アスエネ	タッチパッド	日東電工	鈴与商事/ ウイングアーク1 s t			NT グ
POM ABS アルミニウ	- 日東電工 ム -	鈴与商事/ ウイングアーク1st	KBD	アイシン	アスエネ			Ē
ステンレス PC-ABS PE		日立ソリューションス - -	筐体	長瀬産業	NTTデータ グループ		パソコン	
アルミニウ 銅板 PE	ム 長瀬産業 - - -	NTTデータ グル <u></u> ープ -	FAN	本田技研工業	日立製作所			
LCDパネ アクリル PET			LCDユニット	-	-	\vdash		
<mark>銅板</mark> 銅 PC	富士通 - -	日立製作所	ACアダプタ	みずほリサーチ& テクノロジーズ	ゼロボード			
卸 PE CR	長瀬産業	NTTデータ グル <u></u> ープ -	ACケーブル	富士通	日立製作所			

	Tier0役	
部品名	ユーザ	ソリューション
	ユニ・チャーム	デロイトトーマツ
	本田技研工業	日立製作所
	みずほリサーチ& テクノロジーズ	ゼロボード
	NTTデータ グループ	デロイトトーマツ
	富士通	日立製作所
パソコン	-	-
	-	-
	-	-
		ope3 安分

実証スケジュール

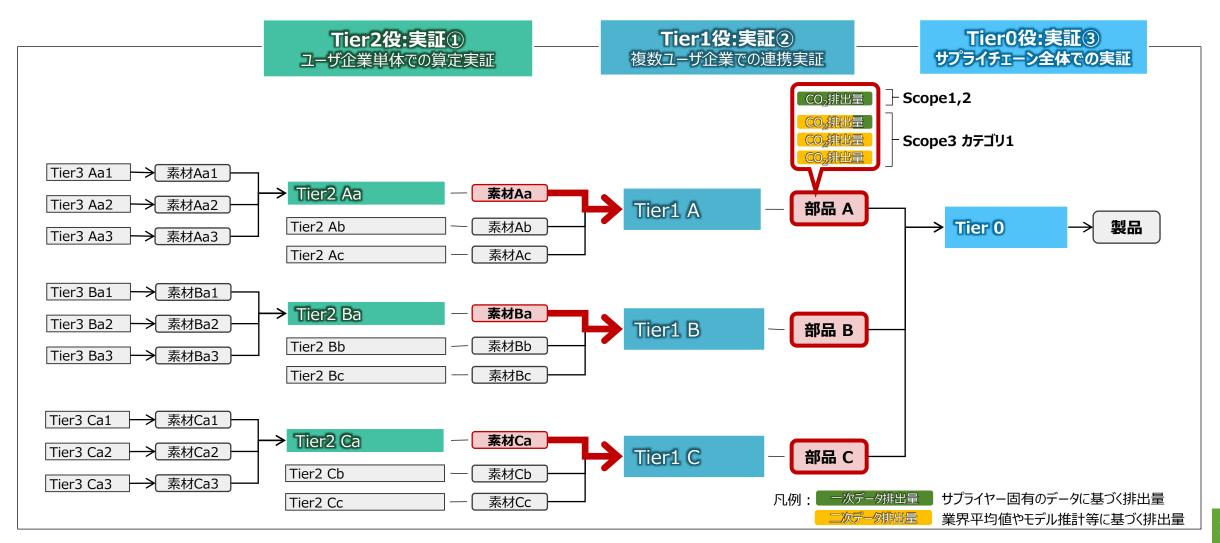
2022年10月にキックオフし、2023年6月に実証完了



実証内容

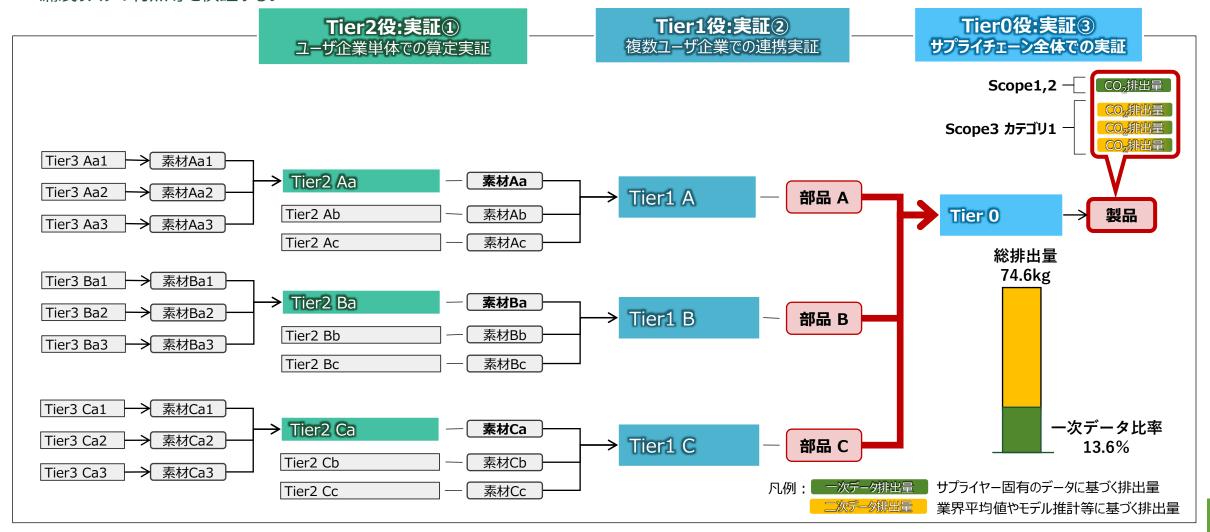
実証①:ユーザ企業単体での算定実証

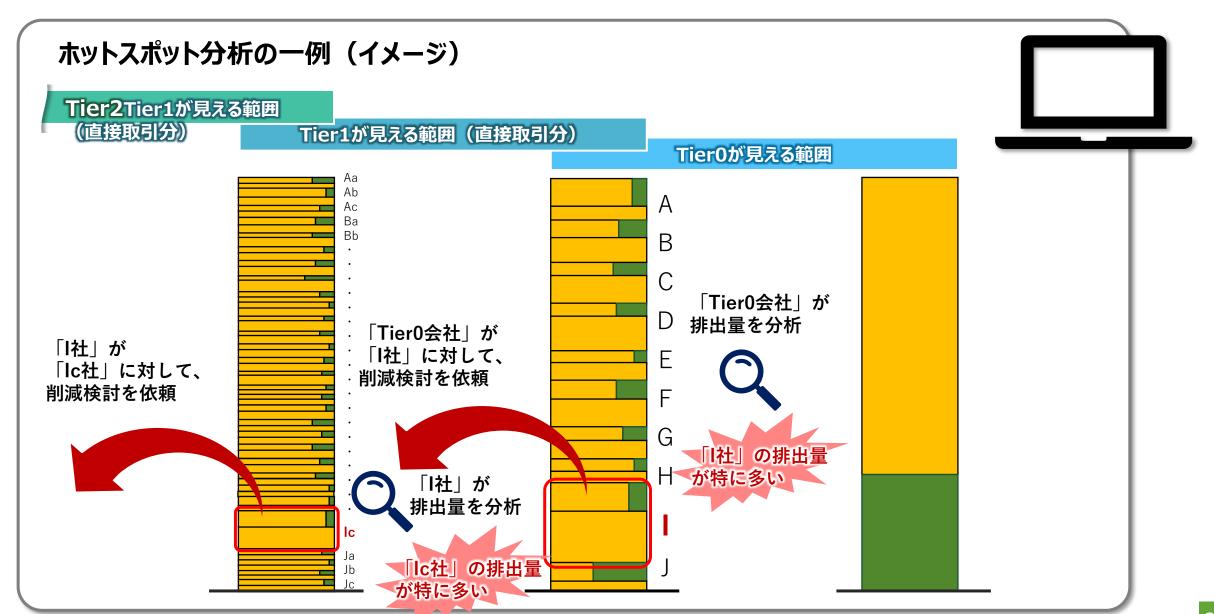
Tier1,2企業が、自社排出量のプロセス特定やデータを収集し、CO2排出量を算定


- 1. 「CO2可視化フレームワーク」に沿って机上算定およびツール算定を行うためにデータ収集を行う。
- 2. 収集したデータを用いて机上算定・ツール算定を行い、それぞれの作業にてPCFデータを算定する。
- 3. 最終的に算定したPCFデータを比較して、算定作業やツールの機能等に問題がないことを確認する。

実証②:複数ユーザ企業での連携実証

Tier1企業が、Tier2企業の排出原単位(一次データ)を取得


- 1. 「データ連携のための技術仕様」に沿って上流企業(Tier2)から下流企業(Tier1)にデータを接続する。
- 2. Tier2からのデータを接続されたデータに置き換えたうえで、Tier1にて実証①と同様の検証(ツール算定、机上算定)を行う。


実証③: サプライチェーン全体での実証 1/2

TierO企業が、Tier1企業のCO2排出量削減に向けた活用検討

- 1. サプライチェーン全体から得られた一次データに基づくPCF算定として、Tier1の算定結果を用いたPCF算定をTier0にて行う。
- 2. (任意)各ツールに実装された、サプライチェーン上流の排出構造を可視化する機能を活用し、可視化された排出構造の分析(ホットスポット分析)や情報 漏洩リスクの有無等を検証する。

実証③: サプライチェーン全体での実証 2/2

実証結果

実証結果

参加企業からの評価コメント

今後の検討課題

実証①

ユーザ企業単体での 算定実証

● Attributable Processの判断が難しい(「空調」「照明」など、どこまで算定すべきか)。

● Scope1,2の算定結果には空調分も含まれているが、このまま配分して良いのか。

● Scope1,2とScope3で按分できる精度が異なるため、Scope別等で按分できるようにして欲しい。

● 証書適用時にエビデンス添付の必要性を感じた。

算定対象プロセス特定のガイダンス整備

組織レベル算定における配分方法の整備

受領データの品質確保に向けた基準整備

データ連携時の機密情報保護への対策

受領データの品質評価に向けた基準整備

実証②

複数ユーザ企業での 連携実証

● データの取扱いや安全性に不安を感じた。

● データ項目が共通でも、利用者の理解度で入力ミスが生じたままデータ連携されてしまった。

● 組織レベル算定における定量的な品質評価が難しい(詳細な配分情報などがないと判断できない)。

● 小数点以下の規定がなく、机上計算とシステム上とで値が完全には一致しなかった。

● 重量当たりの原単位は扱いづらく、「個」の宣言単位も必要。

実務を考慮したデータフォーマットの修正

実証③

サプライチェーン全体での 実証

● ホットスポット分析や縦比較のためには、GateToGateで個社・製品等を同定できる項目が必要。

● 各ソリューションのユーザインタフェースへの要望あり。

CO。排出量削減に向けたデータの追加

実務を考慮したソリューション機能の改修

実証の成果まとめ、意義

- 1. 32社参加という大規模での実証実験で、当初の目的を全て達成できた。
 - ▶「CO2可視化フレームワーク」に基づく製品レベルまたは組織レベルでのCO2算定
 - ▶「データ連携のための技術仕様」に基づくサプライチェーン上流企業からの一次データ取得
 - ▶ エンドユーザー企業における、CO₂排出量削減のための継続的な改善に向けた活用検討
- 2. 特に、PACTでは含まれない「Gate to Gate」データを連携させることで、ある程度のデータ分析(ホットスポット分析)が可能であることを確認できた。これは、排出削減に向けたエンゲージメントを促進させる有効なツールとなる。 今後、PACT側へもPathfinder Frameworkへの反映の検討を働きかけたい
- 3. 実証実験を通じて、今後の改善に向けた課題が明確になった。 (実施ガイダンス整備、データ品質確保・評価のための基準づくり)等)

今後の計画

■ 実証フェーズ (~2023年6月)

実証実験(フェーズ1、フェーズ2)

CO2可視化フレームワーク

Pathfinder Framework Ver.1ベース+独自要素

データ連携のための技術仕様

Pathfinder Network Ver.1ベース+独自要素

■ **社会実装フェーズ** (2023年7月頃~2024年3月頃)

社会実装に向けた2軸のアクション

B 軸

「フレームワーク」と「技術仕様」を広める

- ~成果物の活用促進を目指したアウトリーチ~
- A 軸
- ✓ 他団体への周知・普及活動
- ✓ 企業への普及・理解促進活動
- ✓ グローバルへの発信
- ✓ グローバル接続 等

実装・運用に必要な要素をカバーする

- ~「フレームワーク」と「技術仕様」の更新、追加検討~
- ✓ CO₂可視化FW、技術仕様の更新(PACTver2、実証結果反映)
- ✓ 物流部門のデータ連携検討
- ✓ 検証の課題対応
- ✓ 技術事例の検討 等

【付録】ユーザ企業の実施可否(実証①製品レベル)

• 対象:製品レベル算定を担当するTier1,Tier2役のユーザ企業

				ユーザ企業実施	状況(n = 11)	
		算定プロセス	非実施	実施・完了 できず	実施・完了 (懸念あり)	実施·完了
1a-i	関連プロセスの特定	●選定した自社製品について、関連するプロセス(Attributable Process)を特定する。 ⇒「製品をつくる」に関わるプロセス:自社内の製造プロセス(直接活動)	0	1	0	10
		●選定した自社製品について、関連するプロセス(Attributable Process)を特定する。 ⇒「製品になる」に関わるプロセス:製品の原材料の製造プロセス(上流活動)	0	1	1	9
1a-ii	関連プロセスごとの活動量データの収集	●「製品をつくる」に関わるプロセス(自社内の製造プロセス)の活動量データを収集する ⇒「燃料・電力を使用する生産設備・工具を使用するプロセス」における、 対象製品の宣言単位当たりの燃料・電力使用データ	0	1	2	8
		●「製品をつくる」に関わるプロセス(自社内の製造プロセス)の活動量データを収集する ⇒「直接GHGを排出するプロセス」における排出量データ	4	1	0	6
		●「製品になる」に関わるプロセス(調達する部品・素材の製造プロセス(最上流まで))の活動量データを収集する	2	0	1	8
1b	データの類型化 (直接活動、上流活動)	(1a-iiで実施済み)			_	
1c	活動量に対応する排出原単位の収集	●除外対象外とした活動量データについて、対応する排出原単位を収集する。(直接活動)	1	0	0	10
		●除外対象外とした活動量データについて、対応する排出原単位を収集する。(上流活動)	3	0	1	7
2-i	活動量×排出原単位の計算	●対象プロセスごとに、活動量データと排出原単位を乗算する。	0	0	0	11
		●「活動量データと排出原単位の乗算」ごとのPDSを計算する。(直接活動)	1	0	1	9
		●「活動量データと排出原単位の乗算」ごとのPDSを計算する。 (上流活動)	2	0	1	8
2-ii	直接排出量、証書加算分の加算 (必要に応じて)	●証書の効果を計算する。(直接排出量のデータ算定は 1a-iiで実施済み)	10	0	1	0
2-iii	PCFの算定(※排出量の集計)	● 2-ii までの各排出量を合計(= Σ (活動量×排出原単位)+直接排出量)し、PCFを算定する。	0	0	0	11
2-iv	PDSの算定	●2-i で「活動量×排出原単位」ごとに求めたPDS算定結果を、排出量で加重平均して、PCF全体のPDSを算定する。	1	0	0	10
3	PCF算定の検証(内部検証) (※任意)	● Pathfinder framework v2 ドラフトで示された「Assurance evidence pack」に沿って、エビデンスを用意する ●エビデンスに対して、Pathfinder framework v2ドラフトが示すエビデンスの点検の観点から、自己点検を行う。	7	0	0	3
4	PCF共有の準備	●共通データフォーマットに対応したデータ・情報を準備する	1	0	0	10

【付録】ユーザ企業の実施可否(実証①組織レベル)

• 対象:組織レベル算定を担当するTier1,Tier2役のユーザ企業

				ユーザ企業実施	状況(n = 9)	
		は、これでは、これでは、 算定プロセス と、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは	非実施	実施・完了 できず	実施・完了 (懸念あり)	実施·完了
0	Scope1・2・3排出量データの内容確認	●自社の算定済のScope1・2・3排出量データの内容を確認する。	0	0	0	9
1	Scope3カテゴリ単位のバウンダリ設定 (※任意)	●Attributable Processに該当するScopeとScope3カテゴリを選定する。	2	0	1	6
2	プロセス細分割の実施 (※任意)	●プロセス細分割として、グループ全体のScope1・2・3排出量データの中から、対象製品の製造に関わりのある会社/拠点/生産ラインのデータのみを取り出す。	0	2	1	6
3a	配分指標の選定	●CO ₂ 可視化フレームワークが示す優先順位にて、配分指標の選定を行う。	0	0	0	9
3b	配分による顧客提供用CO2データの算定	●配分計算によって、顧客に提供するCO2データを算定する(直接活動)。	0	0	0	9
		●配分計算によって、顧客に提供するCO2データを算定する(上流活動)。 ⇒(Tier2ユーザ企業の場合)Scope3カテゴリの単純な配分を行う。	2	0	0	7
		●配分計算によって、顧客に提供するCO ₂ データを算定する(上流活動)。 ⇒(Tier1ユーザ企業の場合)原則、ウソBOMベースで、関連のある原料の製造・輸送排出量を紐づける ※自社BOMを追加してもよい。	1	1	1	6
4	証書の加算(※必要に応じて)	●証書の効果を計算する。	6	1	0	2
5	算定されたCO ₂ データの検証(内部検証) (※任意)	●CO ₂ 可視化フレームワークに基づき、カテゴリ選定/プロセス細分割/配分/証書適用の妥当性を確認する。	4	0	0	5
6	CO ₂ データ共有の準備	●共通データフォーマットに対応したデータ・情報を準備する	1	0	1	7

【付録】ユーザ企業の実施可否(実証②製品レベル)

• 対象:製品レベル算定を担当するTier1役のユーザ企業

			ユーザ企業実施	状況(n = 9)		
		算定プロセス	非実施	実施・完了 できず	実施・完了 (懸念あり)	実施·完了
1	PCFデータ&関連情報の受領	●ソリューションを活用して、データフォーマットを用いたPCFデータ&関連情報をサプライヤーから受領する。	0	0	0	9
2	受領データ(PCFデータ&関連情報)に基づく データ品質等の評価	●データフォーマットの情報から「Tier2から提供されたPCFデータがどの程度の品質か」を検討する。	0	0	0	9
3	活動量×排出原単位の計算	●二次データ排出原単位を、サプライヤーPCFに置き換えて当該排出量を計算する	0	0	0	9
4	PCFの再算定(排出量の再集計)	●サプライヤーPCFのPDSを加味して、排出量を再度合計して「PCF」を算定する	0	0	0	9
5	PDSの再算定	●サプライヤーPCFのPDSを加味して、PCF全体のPDSを再算定する。	0	0	1	8
6	PCF算定の検証(内部検証) (任意)	●「Assurance evidence pack」に沿って、エビデンスを用意する ●用意されたエビデンスに対して、Pathfinder framework v2ドラフトが示すエビデンスの点検の観点から、自己点検を行う	6	0	0	3
7	PCF共有の準備	●共通データフォーマットに対応したデータ・情報を準備する	0	0	0	9

【付録】ユーザ企業の実施可否(実証②組織レベル)

• 対象:組織レベル算定を担当するTier1役のユーザ企業

				ユーザ企業実施	状況(n = 8)	
		算定プロセス	非実施	実施・完了 できず	実施・完了 (懸念あり)	実施·完了
1	CO2データ&関連情報の受領	●ソリューションを活用して、データフォーマットを用いたCO2データ&関連情報をサプライヤーから受領する。	0	0	0	8
2	受領データ(CO2データ&関連情報)に基づくデータ品質等の評価	●データフォーマットの情報から「Tier2から提供されたCO ₂ データがどの程度の品質か」を検討する。	0	0	1	7
3	二次データ排出量原単位をサプライヤーCO2 データに置き換えた、排出量計算	●二次データ排出量原単位をサプライヤーCO2データに置き換えて、上流活動に関する排出量を算定する。	0	0	0	8
4	CO ₂ データ(配分後)の再算定(排出量の 再集計)	●排出量を再集計して「CO2データ」を算定する。	0	0	0	8
5	算定されたCO2データの検証(内部検証) (任意)	●CO2可視化フレームワークに基づき、カテゴリ選定/プロセス細分割/配分/証書適用の妥当性を確認する。	6	0	1	1
6	CO2データ共有の準備	●共通データフォーマットに対応したデータ・情報を準備する	0	0	0	8

【付録】ユーザ企業の実施可否(実証③製品レベル)

• 対象:製品レベル算定を担当するTierO役のユーザ企業

		算定プロセス		ユーザ企業実施	状況(n = 6)	
		は、これでは、これでは、一般では、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	非実施	実施・完了 できず	実施・完了 (懸念あり)	実施·完了
1	PCFデータ&関連情報の受領	●ソリューションを活用して、データフォーマットを用いたPCFデータ&関連情報をサプライヤーから受領する。	0	0	1	5
2	受領データ(PCFデータ&関連情報)に基づく データ品質等の評価	●データフォーマットの情報から「Tier1から提供されたPCFデータがどの程度の品質か」を検討する。	0	2	0	4
3	活動量×排出原単位の計算	●「ダミー活動量×サプライヤー各社提供のPCF」をそれぞれ計算する。	0	0	1	5
4	PCFの算定(排出量の集計)	●3 の排出量を合計(=Σ(活動量×排出原単位))し、PCFを算定する。	0	0	0	6
5	PDSの算定	●サプライヤーPCFのPDSを加味して、PCF全体のPDSを再算定する。	1	0	0	5
6	ホットスポット分析の実施	●ホットスポット分析を実施する。	1	1	1	3

【付録】ユーザ企業の実施可否(実証③組織レベル)

• 対象:組織レベル算定を担当するTierO役のユーザ企業

	算定プロセス			ユーザ企業実施状況(n = 5)				
		算定プロセス	非実施	実施・完了 できず	実施・完了 (懸念あり)	実施·完了		
1	CO2データ&関連情報の受領	●ソリューションを活用して、データフォーマットを用いたCO2データ&関連情報をサプライヤーから受領する。	0	0	1	3		
2	受領データ(CO2データ&関連情報)に基づくデータ品質等の評価	●データフォーマットの情報から「Tier1から提供されたCO2データがどの程度の品質か」を検討する。	0	0	1	3		
3	二次データ排出量原単位をサプライヤーCO2 データに置き換えた、排出量計算	●二次データ排出量原単位をサプライヤーCO2データに置き換えて、上流活動に関する排出量を算定する。	0	0	0	4		
4	CO ₂ データ(配分後)の再算定(排出量の 再集計)	●排出量を再集計して「CO2データ」を算定する。	0	0	0	4		
5	ホットスポット分析の実施	●ホットスポット分析を実施する。	2	0	0	2		